Lecture 06
 12.5: Distance with lines and planes

Jeremiah Southwick

January 28, 2019

Things to note

Office hours today: 12-2
Quiz average: 8.33 (without 0's) Quiz average: 6.76 (with 0's)
Collect HW2.

Last Class

Definition
Let $\overrightarrow{\mathbf{n}}=\langle A, B, C\rangle$ be a normal vector to a plane containing the point $P_{0}=\left(x_{0}, y_{0}, z_{0}\right)$. Then the equation of the plane (where $\left.P_{1}=(x, y, z)\right)$ is

$$
\overrightarrow{\mathbf{n}} \cdot \overrightarrow{P_{0} P_{1}}=0
$$

or
$A x+B y+C z=A x_{0}+B y_{0}+C z_{0}$ the coordinate form simplified.

Plane example

Example

Find the equation of the plane through $R=(0,0,1), S=(2,0,0)$, and $T=(0,3,0)$.
Two vectors in the plane are $\overrightarrow{R S}=\langle 2,0,-1\rangle$ and $\overrightarrow{R T}=\langle 0,3,-1\rangle$.

$$
\overrightarrow{R S} \times \overrightarrow{R T}=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
2 & 0 & -1 \\
0 & 3 & -1
\end{array}\right|=\left|\begin{array}{cc}
0 & -1 \\
3 & -1
\end{array}\right| \overrightarrow{\mathbf{i}}-\left|\begin{array}{cc}
2 & -1 \\
0 & -1
\end{array}\right| \overrightarrow{\mathbf{j}}+\left|\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right| \overrightarrow{\mathbf{k}}=\langle 3,2,6\rangle
$$

Plane example

Example

Find the equation of the plane through $R=(0,0,1), S=(2,0,0)$, and $T=(0,3,0)$.
Two vectors in the plane are $\overrightarrow{R S}=\langle 2,0,-1\rangle$ and $\overrightarrow{R T}=\langle 0,3,-1\rangle$.

$$
\overrightarrow{R S} \times \overrightarrow{R T}=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
2 & 0 & -1 \\
0 & 3 & -1
\end{array}\right|=\left|\begin{array}{cc}
0 & -1 \\
3 & -1
\end{array}\right| \overrightarrow{\mathbf{i}}-\left|\begin{array}{cc}
2 & -1 \\
0 & -1
\end{array}\right| \overrightarrow{\mathbf{j}}+\left|\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right| \overrightarrow{\mathbf{k}}=\langle 3,2,6\rangle
$$

Thus the equation of the plane is

$$
\langle 3,2,6\rangle \cdot\langle x-0, y-0, z-1\rangle=0, \text { or } 3 x+2 y+6 z=6
$$

Notice you could use any of the given points.

Combining lines and planes

Example

Find the line of intersection of the planes $3 x-6 y-2 z=15$ and $2 x+y-2 z=5$.
Direction:

Combining lines and planes

Example

Find the line of intersection of the planes $3 x-6 y-2 z=15$ and $2 x+y-2 z=5$.
Direction: We have

$$
\overrightarrow{n_{1}} \times \overrightarrow{n_{2}}=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
3 & -6 & -2 \\
2 & 1 & -2
\end{array}\right|=\left|\begin{array}{cc}
-6 & -2 \\
1 & -2
\end{array}\right| \overrightarrow{\mathbf{i}}-\left|\begin{array}{cc}
3 & -2 \\
2 & -2
\end{array}\right| \overrightarrow{\mathbf{j}}+\left|\begin{array}{cc}
3 & -6 \\
2 & 1
\end{array}\right| \overrightarrow{\mathbf{k}}=\langle 14,2,15\rangle .
$$

Point:

Combining lines and planes

Example

Find the line of intersection of the planes $3 x-6 y-2 z=15$ and $2 x+y-2 z=5$.
Direction: We have

$$
\overrightarrow{n_{1}} \times \overrightarrow{n_{2}}=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
3 & -6 & -2 \\
2 & 1 & -2
\end{array}\right|=\left|\begin{array}{cc}
-6 & -2 \\
1 & -2
\end{array}\right| \overrightarrow{\mathbf{i}}-\left|\begin{array}{cc}
3 & -2 \\
2 & -2
\end{array}\right| \overrightarrow{\mathbf{j}}+\left|\begin{array}{cc}
3 & -6 \\
2 & 1
\end{array}\right| \overrightarrow{\mathbf{k}}=\langle 14,2,15\rangle .
$$

Point: When $z=0$,
$3 x-6 y=15$ and $2 x+y=5 \Rightarrow 15 x+0 y=45 \Rightarrow x=3, y=-1$
Line:

Combining lines and planes

Example

Find the line of intersection of the planes $3 x-6 y-2 z=15$ and $2 x+y-2 z=5$.
Direction: We have

$$
\overrightarrow{n_{1}} \times \overrightarrow{n_{2}}=\left|\begin{array}{ccc}
\overrightarrow{\mathbf{i}} & \overrightarrow{\mathbf{j}} & \overrightarrow{\mathbf{k}} \\
3 & -6 & -2 \\
2 & 1 & -2
\end{array}\right|=\left|\begin{array}{cc}
-6 & -2 \\
1 & -2
\end{array}\right| \overrightarrow{\mathbf{i}}-\left|\begin{array}{cc}
3 & -2 \\
2 & -2
\end{array}\right| \overrightarrow{\mathbf{j}}+\left|\begin{array}{cc}
3 & -6 \\
2 & 1
\end{array}\right| \overrightarrow{\mathbf{k}}=\langle 14,2,15\rangle .
$$

Point: When $z=0$,
$3 x-6 y=15$ and $2 x+y=5 \Rightarrow 15 x+0 y=45 \Rightarrow x=3, y=-1$
Line: $\overrightarrow{\mathbf{r}}(t)=\langle 3,-1,0\rangle+t\langle 14,2,15\rangle$.

Combining lines and planes, cont.

Example

Find the point of intersection between the line
$\overrightarrow{\mathbf{r}}(t)=\left\langle\frac{8}{3}+2 t,-2 t, 1+t\right\rangle$ and the plane $3 x+2 y+6 z=6$.

Combining lines and planes, cont.

Example

Find the point of intersection between the line
$\overrightarrow{\mathbf{r}}(t)=\left\langle\frac{8}{3}+2 t,-2 t, 1+t\right\rangle$ and the plane $3 x+2 y+6 z=6$.

$$
\begin{gathered}
3\left(\frac{8}{3}+2 t\right)+2(-2 t)+6(1+t)=6 \\
\Rightarrow 8+6 t-4 t+6+6 t=6 \Rightarrow 8 t=-8 \Rightarrow t=-1 .
\end{gathered}
$$

Combining lines and planes, cont.

Example

Find the point of intersection between the line
$\overrightarrow{\mathbf{r}}(t)=\left\langle\frac{8}{3}+2 t,-2 t, 1+t\right\rangle$ and the plane $3 x+2 y+6 z=6$.

$$
\begin{gathered}
3\left(\frac{8}{3}+2 t\right)+2(-2 t)+6(1+t)=6 \\
\Rightarrow 8+6 t-4 t+6+6 t=6 \Rightarrow 8 t=-8 \Rightarrow t=-1 .
\end{gathered}
$$

So the point is $\left(\frac{8}{3}+2(-1),-2(-1), 1-1\right)=\left(\frac{2}{3}, 2,0\right)$.

Distance Activity

Distance Activity

1. Form groups of 3-4 people (may require moving)

Distance Activity

1. Form groups of 3-4 people (may require moving)
2. Exchange names (may require talking)

Distance Activity

1. Form groups of 3-4 people (may require moving)
2. Exchange names (may require talking)
3. Work on handout together

Distance Activity

1. Form groups of 3-4 people (may require moving)
2. Exchange names (may require talking)
3. Work on handout together

3a. "How did you figure that out?"
3b. "Does that make sense?"
3c. "What made you think to do that?"

Distance Activity

1. Form groups of 3-4 people (may require moving)
2. Exchange names (may require talking)
3. Work on handout together

3a. "How did you figure that out?"
3b. "Does that make sense?"
3c. "What made you think to do that?"
4. Activity will not be collected

Distance Activity

1. Form groups of 3-4 people (may require moving)
2. Exchange names (may require talking)
3. Work on handout together

3a. "How did you figure that out?"
3b. "Does that make sense?"
3c. "What made you think to do that?"
4. Activity will not be collected
5. Raise hand to get Jeremiah's attention if you need it

